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Figure A1: Relationship between bid shares and purchase agreement prices

B Equilibrium Bid Share-Price Relationship

Consider a bidder with an increasing concave utility function u and cost c in a pay-

as-bid auction. I set the discount factor δ = 1 for simplicity, though the following
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argument applies to general δ. The bidder’s bid share decision problem is effectively

the following portfolio optimization:

max
q

E[u(qb∗ + (1− q)r − c)] = u(qb∗ + (1− q)µr − c−RPr(1− q)),

where b∗ is the bidder’s equilibrium bid price, and RPr(1− q) := RP(1−q)r (defined in

equation (1) in Section 2) is the bidder’s risk premium for selling share 1 − q of the

electricity to the wholesale market. I assume the risk premium function is increasing,

differentiable, and convex. The risk premium is zero when the bidder is not exposed

to the wholesale market risk, i.e., RPr(0) = 0.

The optimal bid share q∗ satisfies RP ′
r(1−q∗) = µr−b∗ for q∗ ∈ (q, 1). q∗ balances

the marginal risk premium and the marginal expected gain from the wholesale market

relative to the purchase agreement. The optimal bid share implied by this equality,

q∗ = 1− (RP ′
r)

−1(µr − b∗), is continuous and increasing with respect to b∗.

The counterfactuals of comparing risk-sharing contracts with different shares of

risk the policymaker takes, λ, in Section 7 require the entire risk premium function,

RPr(1 − λ), ∀λ ∈ [0, 1]. Consider auctions without a constraint on the possible

bid share, i.e., q = 0, first. The equilibrium bid share-price relationship q∗(b∗) for

all q∗ ∈ [0, 1] is identified from the bid data, as in Section 5.1. Let b∗0 and b∗1 be

the maximum and minimum equilibrium bid prices b∗ that satisfy q∗(b∗) = 0 and 1,

respectively. The expected wholesale price µr is identified as µr = b∗1 because

q∗(b∗1) = 1− (RP ′
r)

−1(µr − b∗1) ⇐⇒ µr = b∗1.

Since the continuity and monotonicity of q∗(b∗) are assured in b∗ ∈ [b∗0, b
∗
1], I obtain

b∗(q∗), ∀q∗ ∈ [0, 1], by taking the inverse of q∗(b∗) in b∗ ∈ [b∗0, b
∗
1]. Given the initial

condition of RPr(0) = 0, I integrate out RP ′
r(1 − q∗) = µr − b∗(q∗) from q∗ = 1 to 0

to recover the risk premium function RPr(1− q∗) for all q∗ ∈ [0, 1]. If the minimum

possible bid share is non-zero (i.e., q > 0), identifying the entire risk premium function

(RPr(1 − q∗) for all q∗ ∈ [0, 1]) requires some functional form restrictions to extend

the risk premium function to the region outside the possible bid share, q∗ ∈ [0, q).

I exemplify the identifying power of a functional form restriction by considering a

risk premium that increases proportionally to the variance of the risk, as is the case

with a CARA utility and normally distributed wholesale market price r in Section 4.
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The risk premium function can be specified as RPr(1−q∗) = (1−q∗)2RPr(1) because

the variance of the bidder’s risk is proportional to the square of the share of risk the

bidder takes, (1− q∗)2. Then,

µr − b∗(q∗) = RP ′
r(1− q∗) = 2(1− q∗)RPr(1),

so, RPr(1), the bidder’s risk premium for taking all wholesale market risks, is the

difference between the expected wholesale price µr (identified as b∗1) and the equilib-

rium bid price b∗ at q∗ = 0.5, i.e., RPr(1) = µr − b∗(0.5). Moreover, the entire risk

premium function is recovered as RPr(1 − q∗) = (1 − q∗)2RPr(1) for all q∗ ∈ [0, 1]

because of the functional form specification. Therefore, the entire risk premium func-

tion is identified from the information on the equilibrium bid price at the equilibrium

bid share of 100% (to identify µr) and 50% (to identify RPr(1)).

C Estimation Procedures

C.1 Wholesale Market Variance

Consider an auction at year t = 0 with a lead time l ≥ 1. I detail the wholesale

market variance calculation as defined in Section 4, i.e., σ2
r = Var(T−1

∑l+T−1
t=l δtrt).

I consider integer-valued lead time and a mean reverting process for discrete time

t = 0, 1, . . . in the model. I linearly interpolate σ2
r for lead times that are not integer-

valued.

I specify a mean reverting process (or an AR(1) model with an intercept) of

wholesale market prices as

rt = A+ ρrt−1 + ξt, ξt ∼ N (0, σ2
ξ ),

where A is an intercept, ρ is an autocorrelation coefficient, and ξt is a residual inde-

pendent across t. I use annual spot market prices to estimate the parameters (A, ρ, σ2
ξ )

by maximum likelihood estimation. As the mean reverting process implies

rt = A
t−1∑
s=0

ρt−s + ρtr0 +
t−1∑
s=0

ρsξt−s,
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the wholesale market variance σ2
r can be calculated as

σ2
r =

σ2
ξ

T 2

[
l∑

t=1

(
δlρl−t(1− δTρT )

1− δρ

)2

+
l+T−1∑
t=l+1

(
δt(1− δl+T−tρl+T−t)

1− δρ

)2
]
.

C.2 Equilibrium Clearing Price Distribution

I detail the calculation of the uniform-price auction’s equilibrium clearing price dis-

tribution. Let X be auction covariates, including auction date t = s, lead time l,

and number of participants N . I specify the conditional distribution of equilibrium

clearing price p∗ given procurement capacity D as

fX
p∗|D = N (βpD0 + βpD1D + βpD2(s+ l) + βpD3N + βpD4N

2, σ2
pD).

I expect a low clearing price with a low procurement capacity D and a large number

of participants N because a low bid price likely clears the auction. The operation

start date, s+ l, intends to capture the trend of bidders’ costs parsimoniously. I use

the parameters (βpD0, βpD1, βpD2, βpD3, βpD4, σ
2
pD) that maximize the likelihood.

I specify the procurement capacity distribution as

fX
D = N (βD0 + βD1s+ βD2N, σ2

D).

The term for auction date s intends to capture the change in the forecasted demand

for new energy at different dates. The procurement capacity may also depend on the

number of participants N since the policymaker may manipulate the procurement

capacity after observing N to maintain the competitiveness of the auction. I use the

parameters (βD0, βD1, βD2, σ
2
D) that maximize the likelihood.

Integrating out the procurement capacity from the conditional equilibrium clearing

price distribution yields the (marginal) equilibrium clearing price distribution: fX
p∗ =

N (µp∗ , σ
2
p∗), whereµp∗ = βpD0 + βpD1(βD0 + βD1s+ βD2N) + βpD2(s+ l) + βpD3N + βpD4N

2

σ2
p∗ = σ2

pD + β2
pD1σ

2
D

.

4



C.3 Indirect Inference

I detail the indirect inference procedure. I first derive the equilibrium bid price dis-

tribution fb∗ in uniform-price auctions. Consider uniform-price auctions with number

of participants N . Let realizations of procurement capacity and number of winners

in a uniform-price auction a be Da and Ma. Then, the equilibrium clearing price

distribution conditional on Da, fp∗|D=Da , can be seen as the distribution of Ma + 1th

order statistic of N i.i.d. samples drawn from fb∗ . Since fp∗|D=Da has been calculated

for all uniform-price auctions as in Online Appendix C.2, I obtain the Ma+1th order

statistic distribution as fb∗Ma+1:N
= fp∗|D=Da . I then calculate fb∗ using the monotone

relationship between the CDFs of the equilibrium bid price distribution, Fb∗ , and the

Ma + 1th order statistic, Fb∗Ma+1:N
:

Fb∗Ma+1:N
(τ) =

N∑
j=Ma+1

(
N

j

)
[Fb∗(τ)]

j[1− Fb∗(τ)]
N−j.

I then estimate the structural parameters θ = (αr, γ, σ
2
η) by indirect inference.

Note that the expected wholesale price µr is parameterized as µr(αr) = δlαr for an

auction with lead time l. For pay-as-bid auctions, I use observed bid prices bdi to

simulate bid shares qzi using the optimal bid share decision and drawing bid share

shocks for each simulation z = 1, . . . , Z. Given a candidate parameter value θ, I

simulate bids (qzi , b
d
i ) in pay-as-bid auction a as follows:

1. Draw ηzi ∼ N (0, σ2
η) for i = 1, . . . ,Ma.

2. Calculate qzi = min{max{q, q∗∗(bdi ;αr, γ) + ηzi }, 1}, where q∗∗ is the uncon-

strained optimal bid share function for pay-as-bid auctions defined as

q∗∗(b;αr, γ) = 1− µr(αr)− δ̃b

γσ2
r

.

For uniform-price auctions, I use simulated winners’ bid prices bzi to simulate

bid shares qzi because I do not observe winners’ bid prices. Each simulation z for

uniform-price auction a with observed clearing price pda involves the following:

1. Draw bzi ∼ fb∗ truncated from above at pda for i = 1, . . . ,Ma.

2. Draw ηzi ∼ N (0, σ2
η) for i = 1, . . . ,Ma.
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3. Calculate qzi = min{max{q, q∗∗(bzi ;αr, γ) + ηzi }, 1}, where q∗∗ is the uncon-

strained optimal bid share function for uniform-price auctions defined as the

solution to equation (9) in Section 4.2.

The auxiliary regression model is

qi =

β0 + β1p
d
a + ei in uniform-price auctions

β0 + β1b
d
i + ei in pay-as-bid auctions

, ei ∼ N (0, σ2
e),

where β = (β0, β1, σ
2
e) are the auxiliary parameters. I obtain the auxiliary parameter

estimates β̂ from data using the observed bid shares qdi as the dependent variable qi

and the simulated auxiliary parameter estimates β̂z(θ) using the simulated bid shares

qzi as qi for each z. The indirect inference estimator minimizes the objective function

defined as

Q(θ) =

(
β̂ − 1

Z

Z∑
z=1

β̂z(θ)

)′

W

(
β̂ − 1

Z

Z∑
z=1

β̂z(θ)

)
,

where W is a weighting matrix. I estimate Var(β̂) using 200 auction-level block

bootstrap replications and use W = [Var(β̂)]−1 as the weighting matrix. I simulate

Z = 200 times.

C.4 Equilibrium Winning Probability Function

I detail the calculation of the pay-as-bid auction’s equilibrium winning probability

function. Let X be auction covariates, including auction date t = s, lead time l, and

number of participants N . I estimate the capacity distribution specified as

fX
C = N (βC0 + βC1(s+ l), σ2

C).

The average capacity is expected to increase by the operation start date, s + l, due

to technological progress.

I estimate the equilibrium bid price distribution specified as

fX
b∗ = N (βb0 + βb1s+ βb2s

2 + βb3l + βb4N, σ2
b ).

The parameterization intends to flexibly capture the time trend and the dependence
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on lead time l. The equilibrium bid price can also depend on the competitiveness of

the auction, proxied by the number of participants N . I form a likelihood using the

distribution of order statistics. The individual log-likelihood for bidder i in auction a

to have the observed bid price bdia and bid price rank counted from the lowest, brankia,

is

ln fX
b∗ (b

d
ia) + (brankia − 1) lnFX

b∗ (b
d
ia) + (N − brankia) ln(1− FX

b∗ (b
d
ia)),

where FX
b∗ is the CDF for the equilibrium bid price distribution. I specify the procure-

ment capacity distribution in the same way as for uniform-price auctions in Online

Appendix C.2.

I then compute the (symmetric) equilibrium winning probability function W ∗ by

simulation. Consider a pay-as-bid auction with lead time l, N participants, and

distributions for the capacity type, equilibrium bid price, and procurement capacity

given as fC , fb∗ , and fD, respectively. The following simulation procedure computes

W ∗ in this auction according to the definition of the winning probability function in

equation (6) in Section 4.1:

1. For z = 1, . . . , Z, draw competitors’ capacity types, Capacityzj ∼ fC , and bid

prices, (b∗j)
z ∼ fb∗ , independently for j = 1, . . . , N − 1.

2. For z′ = 1, . . . , ZD, draw a procurement capacity, Dz′ ∼ fD.

3. Compute the equilibrium winning probability function as

Ŵ ∗(b) =
1

ZD

ZD∑
z′=1

1

Z

Z∑
z=1

1

{
N−1∑
j=1

(q̂∗(bzj)× Capacityzj )1(b
z
j < b) < Dz′

}
,

where q̂∗ is the optimal bid share function as in equation (7) in Section 4.1 with

structural estimates from the portfolio decision (Section 5.2):

q̂∗(b) := min

{
max

{
q, 1− δlα̂r − δ̃b

γ̂σ2
r

}
, 1

}
. (1)

I smooth the indicator functions in the last step using a normal CDF, denoted Φ,

following Ryan (2022): i.e., an indicator function 1(x0 < x) is smoothed as Φ((x −
x0)/h), where I set the bandwidth parameter to be h = $2/MWh, about 1/20 of the
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level of a typical bid. I calculate Ŵ ∗(b) for a grid of b with $0.10/MWh increments

and linearly interpolate between the grid points. I numerically differentiate Ŵ ∗(b) to

obtain the derivative dŴ ∗(b)/db. I simulate Z = ZD = 200 times.

D Other Parameter Values

Wholesale market volatility. Table D1 tabulates the parameter estimates for the mean

reverting process of annual wholesale prices in Online Appendix C.1. The estimated

wholesale market standard deviation (SD) ranges from σr = $4.94–$5.82/MWh across

16 auctions. σr decreases by the lead time because of the discount for the further

future and the stability of the further future prices in the mean reverting process

(Figure D1).

Table D1: Annual wholesale price process parameter estimates

Parameter Estimate

Intercept, A 17.7 (16.4)
AR(1) Coefficient, ρ 0.398 (0.327)
SD(Residual), σξ 27.0 (14.0)

Note: Annual spot prices ($/MWh) from
2001 to 2022 are used in the estimation.
Standard errors (in parentheses) are calcu-
lated using the outer product approxima-
tion method for maximum likelihood esti-
mation. SD stands for standard deviation.

Procurement capacity distribution. Table D2 reports the fitted parameter values

of the procurement capacity model in Online Appendix C.2. The fitted procure-

ment capacity models for pay-as-bid and uniform-price auctions are used to calculate

the equilibrium winning probability function (Online Appendix C.4) and equilibrium

clearing price distribution (Online Appendix C.2), respectively. In pay-as-bid auc-

tions (resp. uniform-price auctions), the procurement capacity is expected to drop

by 34 MW (resp. 23 MW) each year and by 67 MW (resp. 82 MW) if there are

100 fewer participants. The procurement capacity SD is larger for the earlier period

(pay-as-bid auctions from 2011–2015) than for the later period (uniform-price auc-

tions from 2017–2021). The expected procurement capacity ranges from 277.9–488.8
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Figure D1: Relationship between the wholesale market SD and lead time

MW across 8 pay-as-bid auctions and −76.3–410.9 MW across 8 uniform-price auc-

tions. The fitted procurement capacity distribution yields a non-positive procurement

capacity with an appreciable probability, which I interpret as a case where the auc-

tion is canceled. Brazil’s new energy auctions have been canceled about once every

five years historically, and I do not include the canceled auctions in the analysis. I

use procurement capacity distributions truncated from below at 0 in calculating the

pay-as-bid auction’s equilibrium winning probability function.

Table D2: Procurement capacity distribution parameter values

Parameter Pay-as-Bid Auctions Uniform-Price Auctions

Intercept, βD0 230.3 −95.1
Auction Date (year), βD1 −34.4 −23.1
100 Participants, βD2 66.8 82.4
SD(Residual), σD 244.8 132.5

Note: The parameter values best rationalize the observed procurement capacities (MW)
in pay-as-bid (2011–2015) and uniform-price (2017–2021) auctions, respectively. Auc-
tion Date is defined as the year since the beginning of 2011. SD stands for standard
deviation.

Equilibrium clearing price distribution. Table D3 reports the fitted parameter

values of the conditional equilibrium clearing price model for uniform-price auctions

in Online Appendix C.2. The expected clearing price drops by $1.84/MWh for 100

MW less procurement capacity and decreases at a diminishing rate as the number

of participants increases, reflecting the competitiveness of the auction. The fitted
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conditional clearing price distribution and uniform-price auction’s procurement ca-

pacity distribution yield (marginal) clearing price distributions with a mean ranging

from µp∗ = $19.92–$34.33/MWh (across 8 uniform-price auctions) and SD of σp∗ =

$2.55/MWh. The SD of σp∗ = $2.55/MWh is larger than that of the conditional

clearing price distribution, σpD = $0.76/MWh, reflecting the uncertainty bidders face

because the procurement capacity is not disclosed at the time of bidding.

Table D3: Equilibrium clearing price distribution parameter values

Parameter Value

Intercept, βpD0 26.50
Procurement Capacity (100 MW), βpD1 1.84
Operation Start (year), βpD2 3.04
100 Participants, βpD3 −11.75
100 Participants Square, βpD4 0.70
SD(Residual), σpD 0.76

Note: The parameter values best rationalize the observed
clearing prices ($/MWh) in uniform-price auctions from
2017–2021. Operation Start is defined as the year since
the beginning of 2011. SD stands for standard deviation.

Equilibrium winning probability function. I estimate the capacity and equilibrium

bid price distributions to calculate the equilibrium winning probability function for

each pay-as-bid auction as in Online Appendix C.4. Table D4 shows the parameter

estimates for the capacity and equilibrium bid price distribution models. The average

capacity increases by 0.2 MW each year, 1.5% of the overall average of 11.5 MW

from 2011–2015. Bidders understand that the competitors’ equilibrium bid prices

follow a distribution with a mean ranging from $42.64/MWh–$60.07/MWh (across 8

pay-as-bid auctions) and SD of $4.04/MWh. Figure D2 plots the predicted winning

probabilities of the observed winners’ bid prices in each pay-as-bid auction. Most

predicted winning probabilities drop on the steep slope of the equilibrium winning

probability functions, meaning the predicted probabilities are reasonably far from the

two extremes, 0 and 1, as expected.
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Table D4: Equilibrium winning probability function parameter estimates

Capacity Distribution Equilibrium Bid Price Distribution

Intercept, βC0 10.41 (0.78) Intercept, βb0 48.29 (0.21)
Operation Start (year), βC1 0.18 (0.12) Auction Date (year), βb1 −0.86 (0.17)
SD(Residual), σC 3.35 (0.89) Auction Date Square, βb2 0.98 (0.02)

Lead Time (year), βb3 −0.28 (0.06)
100 Participants, βb4 −1.35 (0.07)
SD(Residual), σb 4.04 (0.91)

Note: The parameters are estimated using the pay-as-bid auction data from 2011–2015. Opera-
tion Start and Auction Date are defined as the year since the beginning of 2011. Standard errors
(in parentheses) are calculated using 200 auction-level block bootstrap replications. SD stands for
standard deviation.
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Figure D2: Estimated equilibrium winning probability functions and winners’ bids

E Further Sensitivity Analyses

Table E1 reports the markup estimates by different specifications of the wholesale

market volatility (SD, σr) and equilibrium clearing price distribution in uniform-

price auctions (mean, µp∗ , and SD, σp∗), analogous to Table 3 in Section 6. The
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clearing price distribution misspecification (Panel B and C) barely affects the markup

estimates in pay-as-bid auctions, similar to the cost estimates in Table 3, because they

are both estimated from bidders’ bid price decisions.

Table E1: Sensitivity analysis: Winners’ average markup

Change from the Main Specification

A. Wholesale Price SD, σr −50% −25% Main +25% +50%

Markup ($/MWh) 0.79 1.19 1.54 1.85 2.13

B. Clearing Price Mean, µp∗ −2SD −1SD Main +1SD +2SD

Markup ($/MWh) 1.64 1.56 1.54 1.56 1.63

C. Clearing Price SD, σp∗ −50% −25% Main +25% +50%

Markup ($/MWh) 1.44 1.48 1.54 1.64 1.79

Note: Values are the capacity-weighted average of the pay-as-bid auction win-
ners. SD stands for standard deviation.

Table E2 tabulates the risk premium, cost, and markup estimates from combi-

nations of different wholesale market volatility and clearing price distribution spec-

ifications. It contains all combinations of changing the main specification of σr =

$4.94–$5.82/MWh, µp∗ = $19.92–$34.33/MWh, and σp∗ = $2.55/MWh to 75%–125%,

-1–+1 SD of σp∗ = $2.55/MWh, and 75%–125% of them, respectively. Overall, the

risk premium, cost, and markup estimates range from $5.70–$8.27/MWh, $20.27–
$21.16/MWh, and $1.12–$2.03/MWh, respectively, across various alternative specifi-

cations.

F Counterfactual Winning Probability Function

I compute the counterfactual winning probability function H in Appendix A.3 for

the 8 pay-as-bid auctions from 2011–2015. Consider an auction with lead time l, N

participants, and distributions for the capacity type, equilibrium bid price, cost type,

and procurement capacity, fC , fb∗ , fc, and fD, respectively. The following simulation

procedure computes H of this auction:

1. For z = 1, . . . , Z, draw participants’ capacity types, Capacityzi ∼ fC , and bid

prices, (b∗i )
z ∼ fb∗ , independently for i = 1, . . . , N .
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Table E2: Sensitivity analysis: Combinations of different specifications

Change from the Main Specification

Clearing Price Mean, µp∗ −1SD Main +1SD

Clearing Price SD, σp∗ −25% Main +25% −25% Main +25% −25% Main +25%

Wholesale Price SD, σr, −25%

Risk Premium ($/MWh) 8.24 7.04 5.70 8.13 7.34 6.34 7.61 7.22 6.53
Cost ($/MWh) 21.16 21.07 20.95 21.15 21.09 21.01 21.11 21.08 21.03
Markup ($/MWh) 1.12 1.21 1.36 1.13 1.19 1.29 1.16 1.20 1.26

Wholesale Price SD, σr, Main

Risk Premium ($/MWh) 8.27 7.17 5.94 8.09 7.38 6.47 7.51 7.14 6.55
Cost ($/MWh) 20.81 20.72 20.59 20.80 20.74 20.65 20.75 20.71 20.66
Markup ($/MWh) 1.46 1.56 1.71 1.48 1.54 1.64 1.53 1.56 1.63

Wholesale Price SD, σr, +25%

Risk Premium ($/MWh) 8.27 7.23 6.04 8.06 7.39 6.53 7.46 7.10 6.54
Cost ($/MWh) 20.51 20.41 20.27 20.49 20.42 20.33 20.43 20.39 20.33
Markup ($/MWh) 1.77 1.87 2.03 1.79 1.85 1.95 1.85 1.88 1.95

Note: Values are the capacity-weighted average of the pay-as-bid auction winners. SD stands for standard deviation.

2. For z′ = 1, . . . , ZD, draw a procurement capacity, Dz′ ∼ fD.

3. For each combination of z and z′, simulate an auction that allows bidders to

choose their shares. Bidder i wins when

Dz′ −
∑
j ̸=i

(q̂∗((b∗j)
z)× Capacityzj )1((b

∗
j)

z ≤ (b∗i )
z) > 0,

where q̂∗ is the estimated optimal bid share function that depends on l (equation

(1) in Online Appendix C.4). Let the set of simulated winners be Winnerz,z
′

and the index of the bidder with the lowest bid price among the simulated losers

be i = kz,z′ .

4. For each combination of z and z′, calculate an implied objective capacity D̃z,z′

by adding up the simulated winners’ capacities as follows:

D̃z,z′ =
∑

i∈Winnerz,z′

Capacityzi+

Dz′ −
∑

i∈Winnerz,z′ (q̂
∗((b∗i )

z)× Capacityzi )

q̂∗((b∗
kz,z′

)s)× Capacityz
kz,z′

× Capacityz
kz,z′

,

where the bidder with the lowest bid price among the losers, i = kz,z′ , con-
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tributes proportionally to the residual of Dz′ to smooth D̃z,z′ .

5. For z = 1, . . . , Z, draw competitors’ cost types, czj ∼ fc, independently for

j = 1, . . . , N − 1.

6. Compute the counterfactual winning probability function as

H(c) =
1

ZD

ZD∑
z′=1

1

Z

Z∑
z=1

1

{
N−1∑
j=1

Capacityzj1(c
z
j < c) < D̃z,z′

}
.

Steps 1–4 convert procurement capacityD to objective capacity D̃. fc is simulated

numerically using the estimated equilibrium bid distribution and the solution to the

bid price decision in equation (8) in Section 4.1. Similarly to the equilibrium winning

probability function computation in Online Appendix C.4, I smooth the indicator

functions in the last step using a normal CDF with a bandwidth parameter h =

$2/MWh. I calculate H(c) for a grid of c with $0.10/MWh increments and linearly

interpolate between the grid points. I numerically differentiate H(c) to obtain the

derivative dH(c)/dc. I simulate Z = ZD = 200 times.
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